Definition. A set $C\subseteq \R^n$ is convex if for any points $x,y\in C$ and $\lambda \in [0,1]$.

$$ \lambda x+(1-\lambda)y\in C $$

Untitled

Familiar Set Convex

Line: fix any $Z\in \R^n$. $0\ne d\in \R^n$.

$$ L=\{Z+td\mid t\in\R\} $$

Untitled

Proof:

$\begin{aligned}\lambda x+(1-\lambda)y&=\lambda(z+td)+(1-\lambda)(z+td)\\&=\lambda z+(1-\lambda)z+\lambda d tx+(1-\lambda)dty\\&=z+(\lambda tx+(1-\lambda)ty)d\end{aligned}$

Hyperplane: $H_{\alpha,\beta}=\{x\in\R^n\mid a^Tx=\beta\}$. where $a\in \R^n\backslash\{0\}\&\beta \in \R$

Untitled

Ex:

$\begin{aligned}H_{e,1}&=\{x\mid e^Tx=1\}\\&=\{x\mid \sum_{j=1}^n x_j=1\}\end{aligned}$

Halfspace: $H^-_{\alpha,\beta}=\{x\in \R^n\mid a^Tx\le \beta\}$$(0\ne a\in\R^n, \beta\in \R)$

Norm balls: $B_\square = \{x\in\R^n\mid \lVert x-C\rVert_\square\le r\}$, where $C\in\R^n$ (center) and $r\in \R_+$ is radius

Untitled

Proof: A norm $\lVert \cdot \rVert:\R^n \to \R_+$ satisfies the following

  1. $\lVert \alpha x\rVert =\lVert \alpha\rVert \cdot \lVert x\rVert, \forall \alpha \in \R$
  2. $\lVert x+y\rVert \le \lVert x\rVert +\lVert y\rVert$
  3. $\lVert x\rVert=0 \Leftrightarrow x=0$

Example: The set of positive semidefinite matrices

$S_{n\times n}\equiv \{x\in \R^{n\times n}\mid x \text{ ane PSD}\}$ is convex

$Z=\lambda x+(1-\lambda)y$, where $X,Y \in S_{n\times n}$ then $Z$ is positive semidefinite.

Operations on sets that preserve convexty:

  1. Intersection

    For any collection of convex sets $C_i \in\R^n$, $i \in I$, then $\underset{i\in I}{\cap}C_i$ is convex. union does not preserve convexity

    Ex: the unit simplex in $\R^n$ is the set $\Delta_n := \{x\in \R^n\mid\sum_{j=1}^nx_j=1,x\ge0\}$

    Untitled

    $$ H^-{e{2,0}}=\{x\in \R^n\mid x_2\ge 0,x_1\in \R\} $$

    Proof: Take $x,y\in\underset{i\in I}{\cap} C_i$

    show $\lambda x+(1-\lambda)y\in \underset{i\in I}{\cap} C_i ,\forall \lambda \in [0,1]$

    Because $x,y \in \underset{i\in I}{\cap} C_i \implies x,y\in C_i \forall i\in I$

    Because $C_i$ convex $\lambda x+(1-\lambda)y\in C_i \forall i \implies \lambda x+(1-\lambda)y\in \underset{i\in I}{\cap} C_i$

  2. Addition. If $C_1,C_2,\ldots,C_m$ are convex sets in $\R^n$, then the set addition

    $$ C_1+C_2+\ldots+C_m=\{Z=x_1+x_2+\ldots+x_m\mid x_i\in C_i, i=1,\ldots,m\} $$

    is convex

  3. Image of a set: if $C\le \R^n$ is convex and $A$ is an $m\times n$ matrix, then $A(c):=\{Ax\mid x\in C\}$ is convex

    Untitled