$$ x_{LS}=\underset{x\in\R^n}{\min}\frac{1}{2}\lVert Ax-b\rVert^2 $$

where $A$ is $m\times n$

$Ax_{LS}$ projection of $b$ onto $range(A)$

$Ax_{LS}$ projection of $b$ onto $range(A)$

$$ \min \frac{1}{2} \lVert Ax-b\rVert^2 \Leftrightarrow \min \frac{1}{2} \lVert z-b\rVert^2 \text{ subject to } z\in range(A) $$

Then (“orthogonal” or “Euclidean”) projection of a vector $b\in \R^n$ onto $C\subseteq \R^n$ convex is the solution of the convex optimization problem

$$ proj_C(b)=\underset{z\in\R^n}{\min}\frac{1}{2}\lVert z-b\rVert^2 \text{ subject to } z\in C $$

Properties of $proj_C(b)$

Untitled

$-\nabla f(z)\in N_C(z)$

$b-z \in N_C(z)$ $\overset{\text{use definition of Normal Cone}}{\Leftrightarrow}(b-z)^T(y-z)\le 0, \forall y\in C$