Computing descend direction

$x_0$ given; $\varepsilon > 0$ convergence tolerance

for $k = 0,1,2,…$

Scaled Descent

$(P)$$\min_{x \in \mathbb{R}^n} f(x)$ $f:\mathbb{R}^n \to \mathbb{R}$ continuous differentiable

Make a change of variables:

$x:=Sy$ or $y=S^{-1}x$

where $S$ is non-singular and squares

Ex:

$\begin{bmatrix} s_1 & & & &\\ &s_2&&&\\ & &s_3&& \\ & & & \ddots & \\ &&&&s_n \end{bmatrix}$

$Sw=0$ iff $w=0$

$S^Tv = 0$ iff $v=0$

$x=\begin{bmatrix}s_1 & & \\ & \ddots & \\&&s_n\end{bmatrix}\begin{bmatrix}y_1 \\ \vdots \\ y_n\end{bmatrix}$⇒ $x_i=s_iy_i$

$(P_{scaled})$ $\min_{y\in \mathbb{R}^n} g(y):=f(Sy)$

Apply gradient descent to $(P_{scaled})$:

$y_{k+1}=y_k-\alpha_k \nabla g(y_k)=y_k-\alpha_kS^T\nabla f(Sy_k)$

$\nabla g(y) = \nabla_y f(Sy) = S^T\nabla f(Sy)$

application of chain rule and $\nabla_x (a^Tx)=a$